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ABSTRACT 
 

In this paper, a large plasticity deformation finite element modeling is presented for three-
dimensional dynamic analysis of unsaturated soils with special reference to the failure of 
lower San Fernando dam under the 1971 earthquake. The finite element method is applied to 
the governing equations for the spatial discretization, followed by a generalized Newmark 
scheme used for the time domain discretization. Time stepping scheme is used in the fully 
implicit coupled method and a direct solution procedure is used for the coupled equation 
system. The framework of generalized plasticity is presented and the numerical results of 
unsaturated soils are demonstrated based on the Pastor-Zienkiewicz model (Int. J. Numer. 
Analyt. Meth. Geomech., 14: pp. 151–190, 1990), Bolzon-Schrefler-Zienkiewicz model 
(Geotechnique, 46: pp. 279–289, 1996), and enhanced-BSZ model (Transport in Porous 
Media, 65: pp.1–30, 2006). Finally, 3D dynamic analysis of the failure of lower San-
Fernando dam is presented based on the modified Pastor-Zienkiewicz plasticity model.  

 
Keywords: Unsaturated soil; plasticity model; large deformation; dynamic analysis; san 
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1. INTRODUCTION 
 

The mechanical behavior of the fully or partially saturated porous medium and in particular 
of soils, is governed largely by the interaction of solid skeleton with the pore fluid, generally 
water, present in the pore structure. This interaction is particularly strong in dynamic 
problems and may lead to liquefaction due to large pore pressure build up, which frequently 
occurs under earthquakes. Generally, porous media are described as the multiphase media 
with separate velocities and stresses for each phase, thereby the stress acting on the solid 
skeleton is usually referred to as effective stress, the hydrostatic stress acting on the fluid 
phase is denoted as the excess pore fluid pressure. The first theory of elastic wave 
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propagation in the fluid-saturated porous solid was developed by Biot [1, 2]. Although these 
first attempts were restricted to linear elastic soil skeleton and fluid flow through the solid 
phase governed by the Darcy law, they have been the basis for a lot of subsequent works in 
geophysics, soil and rock mechanics. A number of numerical modeling were reported for 
porous saturated media, including: the formulation based on soil displacements and pore 
pressures at low frequency, such as earthquakes [3–5], the material non-linearity behavior of 
the soil skeleton [6], and the liquefaction analysis of soil structures based on large 
deformation and nonlinear material behavior [7]. 

The theory of unsaturated soils was proposed based on the modification of Biot 
consolidation theory, which was initially developed for saturated soils. The original models 
were generally based on the typical simplifying assumptions; for instance, the rigid soil 
skeleton, passive gas phase (null gas flow and constant gas pressure equal to the atmospheric 
pressure), and omission of phase transitions which are basically in contrast with the physics 
of the problem in many situations. Chang and Duncan [8] postulated the pore water and pore 
air as a homogeneous and compressible fluid, in which the compressibility of the 
homogeneous fluid is expressed as functions of different parameters, such as pore water 
pressure and degree of saturation. An extension of two phase formulation to semi-saturated 
problems was proposed by Zienkiewicz et al. [9], in which the air or gas phase is assumed at 
atmospheric pressure. The model was employed in the dynamic analysis of semi-saturated 
dam under earthquake loading. The fully coupled dynamic models were presented for multi-
phase fluid flow in deformable porous media involving the air and water phases in soils [10–
14]. However, because of great complexity of multi-phase models, extensive and specially 
designed soil testing is required to determine the properties of the soil-air-water mixture. 

Most of geomaterials under normal engineering conditions presents a mechanical 
behavior which depends on the level of stress, pore pressure, past history, direction of load 
increment and material structure. The plasticity based theory is then applied to provide a 
consistent framework in which the behavior can be accurately predicted. A generalized 
plasticity constitutive model was developed by Pastor et al. [15] to predict the basic 
phenomena encountered in dynamic loading of fully saturated porous media, such as the 
accumulation of plastic strain and pore pressure build-up during the loading process. This 
generalized plasticity does not require the yield and plastic potential surfaces, and the 
hardening modulus would be different in loading and unloading, which is particularly useful 
for cyclic loading. Thus, the model is in principle capable of representing the mechanical 
behavior of both dense and loose sands under quasi-static and dynamic loadings and can be 
used in several situations, such as the analysis of liquefaction, material softening and strain 
localization. The Pastor-Zienkiewicz model was extended by Bolzon et al. [16] to consider 
soil stiffness changes with suction. The Bolzon-Schrefler-Zienkiewicz (BSZ) model was 
applied to various problems, including: the compaction of gas reservoir [17], the strain 
localization of partially saturated clays and sands [18, 19], and the partially saturated soil 
dynamic of surface subsidence above an exploited gas reservoir [20]. The BSZ model was 
then extended by Santagiuliana and Schrefler [21] to consider the hydraulic constitutive 
relationship, hydraulic hysteresis, and a new term of plastic strain to account for irreversible 
deformation during cyclic drying and wetting until structural collapse.  

In the present paper, the 2D dynamic analysis of porous saturated–unsaturated media 
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presented by Khoei et al. [22, 23] is extended into 3D large plasticity deformation of unsaturated 
soils. The numerical solution is based on the large FE deformation for spatial discretization, the 
generalized Newmark scheme for time discretization, and the generalized plasticity models, 
which include the Pastor-Zienkiewicz (PZ), the Bolzon-Schrefler-Zienkiewicz (BSZ), and the 
enhanced-BSZ models. Finally, the 3D dynamic analysis of the failure of lower San Fernando 
dam is presented based on the modified pastor-Zienkiewicz model.  

 
 

2. MECHANICAL DESCRIPTION OF POROUS MEDIA 
 

2.1 Governing equations of saturated soils 
The essence of mathematical theory governing the behavior of porous media with a single 
pore fluid was first established by Biot [1, 2]. Assuming that the size of solid grains and 
pores are very small compared with the dimensions in macroscopic scale, the use of 
averaged variables for total stress ij , solid matrix displacement iu , and the mean flow 
velocity relative to the solid phase iv  are allowed. The effective stress is an essential 
concept defining the stresses, which control strength and constitutive behavior of porous 
material. Considering ij  as the total stress vector, ij  as the Kronecker delta and p  as the 
pore fluid pressure with positive value in compression, the effective stress ij   is defined by 

pijijij   , in which   depends on the material type defined by 1 av sK K   , with 

sK  denoting the bulk modulus of solid particles and avK  the average bulk modulus of the 
solid skeleton.  

The overall equilibrium equations of saturated porous media, particularly soils, with a 
single fluid phase, generally water are presented based on the total equilibrium for soil-pore 
fluid mixture, the equilibrium equation for the pore fluid, called the generalized Darcy 
equation, and the mass balance of flow equation [7]. The governing equations for the soil-
fluid mixture can be written as 

 
 , ,[ ] 0fij j i i j i j iu v v v b          (1) 
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where ib  is the body force per unit mass, f  is the fluid density and   is the density of 
total composite, defined by sf nn  )1(  , with n  denoting the porosity and s  the 
density of solid particles. D

iV  represents the viscose drag force, which can be obtained from 
the Darcy seepage law by D

jiji Vkv  , where ijk  is the dynamic permeability. In above 
equations, ij  are the total strains and fK  is the fluid bulk modulus. The definition of the 
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combined compressibility of the fluid and solid phases is defined by ( )f sC nC n C   , in 
which fC  is the compressibility of fluid defined by ff KC 1 , and sC  is the compressibility 
of solid particles defined by ss KC 1 . 

In equation (1), the underlined term is the effect of fluid relative acceleration to the solid 
particles and convective terms of this acceleration. Equation (2) ensures the momentum 
balance for the fluid phase and equation (3) indicates the mass balance of the fluid flow. In 
equation (3), the fluid flow divergence is balanced by the change of pores volume in the 
control volume. First term is the fluid flow divergence, second is the volume change due to 
change in strains, third is the additional storage volume due to compression of fluid under its 
pressure, forth is the additional storage volume due to compression of solid particle under 
fluid pressure, and fifth is the volume change of solid particles under their effective inter-
granular stress. The last two terms are corresponding to change of fluid density and volume 
change of solid particles in the case of thermal changes and in general are negligible. 

Equations (1)–(3) present the behavior of porous media in both static and dynamic 
conditions, with considering the interaction of its solid skeleton with the pore fluid. The pore 
fluid pressure p , the relative velocity of fluid flow to solid phase iv  and the displacement of 
solid skeleton iu  are the unknown variables in these equations system. When the acceleration 
frequencies are low, as in the case of earthquake motions, the underlined terms in above 
equations are not important and can be omitted [7]. By omitting these terms, the variable iv  
can be eliminated from the equations, so the simplified governing equations, which contain 
two independent variables iu  and p , can be achieved as  

 
 , 0ij j i iu b      (4) 

 

  
 

,
,

0f fij j j j ii
i

p
k p u b

C
        


  (5) 

 
in which equations (4) and (5) together form the pu  formulation, which must be solved in 
a coupled manner.  

 
2.2 Governing equations of unsaturated soils 
In order to develop the governing equations of unsaturated media, some modifications must 
be applied to preceding section. In unsaturated conditions, the soil is taken as porous media 
in which the voids of porous media are filled partly by water and partly by air. Assuming the 
degrees of water and air saturation by wS  and aS , respectively, in which 1 aw SS , the 
density of soil-pore fluid mixture can be modified as (1 )w w a a snS nS n       . 
Furthermore, the definition of effective stress can be modified based on the average pore 
pressure by applying the well known Bishop law as awav ppp )1(   , with   
denoting the Bishop parameter depends on the degree of water saturation wS . If the value of 
air pressure is set to zero )0( ap , the average pore pressure can be then approximated by 

av w wp S p . 
In order to modify the mass balance equation of fluid flow, given in equation (3), the 
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divergence of fluid flow is balanced by the change of pores volume in the control volume. 
Considering the effect of water saturation along with a new term which take these changes 
into account, lead to 

 

 ,
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A modified definition of the combined compressibility C  can be written as 

  

* ( )( )w f s w wC S nC n C n S p      . Applying the material parameter   and the new 
definition of combined compressibility *C  and then, omitting the negligible terms in 
equation (6), the following relation can be obtained 
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in which the relation between the degree of saturation and permeability and also, the degree 
of saturation and water pressure must be taken into account.  

Finally, the modified pu  formulation, including the total equilibrium of soil mixture 
and the continuity and mass balance equation, for static and dynamic behavior of saturated 
and unsaturated soils can be rewritten as 

 
 , 0ij j i iu b      (8) 
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3. NUMERICAL SOLUTION OF GOVERNING EQUATIONS 
 

3.1 Finite element formulation  
In order to obtain a numerical solution for the governing equations of saturated-unsaturated 
porous media, presented in previous section, a suitable discretization process is necessary 
for both spatial and time discretization. The spatial discretization can be achieved by shape 
functions for two variables iu  and wp , defined as  uu N u  and  w pp  N p , where uN  and 

pN  are the shape function of displacement and pore pressure fields. The governing 
equations can now be transformed into a set of algebraic equations in space by the use of an 
appropriate Galerkin method. The descretization of first equation in space can be achieved 
by pre-multiplying equation (8) by T

uN  and integrating over the spatial domain as 
 

    

(1) 0T d


   M u B Qp f   (10) 
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where the mass matrix M , the coupling matrix Q , and the load vector )1(f  are defined as 
 

   
T
u ud


 M N N   

 

    

T
w pS d


 Q B mN  (11) 

 

    

(1)

t

T T
u ud d

 
       f N b N t   

 
and B  is the well known strain matrix relating the increments of strain and displacement 
(i.e.  d dB u ). The bar suffix is added as, if displacements are large, the strains depend 
non-linearly on displacements and the matrix B  is dependent on u . In the second term of 
equation (10), the constitutive law with respect to the incremental stress can be defined as 

 

 
0

ij ijkl kl kl ik kj jk kid D (dε dε ) d d           (12)
 

 
where ijdε

 
and kld

 
are the incremental values of strain and rotation, respectively. The last 

two terms account for the Zaremba–Jaumann rotational stress changes (negligible generally 
in small displacement computation). In equation (12), ijklD

 
is the soil property matrix, 

defined by suitable state variables and the direction of the increment, and 0
ijε refers to strains 

caused by external actions such as temperature changes. 
In a similar manner the second discretized equation is derived by pre-multiplying 

equation (9) by T
pN and integrating over the spatial domain as 

 
   

(2) 0T    Q u H p Cp f  (13) 

 
where 

    
 T
p pk d


   H N N     

 

   

 

*

1T
p p d

C
 C N N  (14) 

  

    

 (2) ( )T T
w fp k S d


   f N b  

 
3.2 Large FE deformation  
The nonlinearities in analyses of porous media arise from two distinct sources; constitutive 
nonlinearities and geometric nonlinearities, the latter being due to large displacements. 
Whether the displacements, or strains, are large or small it is imperative that the equilibrium 
conditions between the internal and external forces have to be satisfied. For geometrically 
nonlinear behavior, we can select either a total or an updated Lagrangian coordinate system. 
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A general definition of strains, which is valid whether the displacements or strains are large 
or small, was introduced by Green and St. Venant. Based on Green strain tensor, the non-
linear strain displacement relationship can be defined in terms of the infinitesimal and large 
displacement components as NLL      , with L  and NL  denoting the linear and 
nonlinear strains and for three-dimensional problems are defined as 
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 (15) 

 
In small displacement theory, the general first order linear strain approximation is 

obtained by neglecting the quadratic terms. In equation (15), the nonlinear terms of 
strain NL  is defined as A

2

1NL , with   denoting the displacement gradient and A  a 
suitably defined matrix operator which contains displacement derivatives and can be derived 
from the definition of NL . For a set of virtual displacements, the corresponding virtual 
Green strains are given as NLL ddd   . 

In order to complete the numerical solution of FE equations, it is necessary to integrate 
the differential equations (10) and (13) in time. The generalized Newmark GN22 method is 
employed for the displacement field and GN11 method for the pressure field as  
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and 
 
       

p
1 1 1 1(1 )n n n n n nt t t         p p p p p p    (17) 

 
where parameters  ,   and   are in the range of 0 to 1 and for unconditional stability of the 
solution process 1/ 4  , 1/ 2   and 1/ 2   [24]. It is assumed that the variables are 
known at time nt  and should be evaluated at time 1n nt t t    , in which the only unknown 
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variables are 1nu  and 1np . Substituting relations (16) and (17) into equations (10) and (13) 
at time 1nt  , we obtain 
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

 , and the matrix B  can be written in terms of the linear and 

nonlinear strain–displacement matrix, i.e. ( )L NL B B B u , where LB  is the same matrix as 

in a linear infinitesimal strain analysis and only NLB  depends on the displacement. Taking 

the variation from 1

2NL  A   results in NLd d A  , in which   is determined in terms 

of the Cartesian shape function derivatives G  and nodal parameter u , as uG . Hence, 

 NLd d G u A  and the nonlinear strain-displacement matrix can be defined as GB ANL , 

i.e. 
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 
 
 
 
 
 

                     
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                         
 
                          

 (20) 

and 
 

 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

I I I

TI I I I

I I I

N N N

x y z

N N N

x y z

N N N

x y z

   
    
            
   
 

   

G  (21) 
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The nonlinear coupled FE equations (19) can be solved using the Newton Raphson 
procedure for iteration i  as 

 

 
 

 

 

 

(1) (1)

(1)

(2)(2) (2)
1

1

i
n
i
n

i

i

n

n

d

d 



  
                  
  

u p u

p

u p

 





G G

G

GG G
 (22) 

 
Finally, the tangential stiffness matrix 1nK


 can be obtained by taking the variation from 

 1 1
T
n n d

    B   as 

      1
1 1

i i
i i T T
n n

n n
d d d d d

 
 

     K u B B


   (23) 

 
The above equation shows that the stiffness matrix K


 consists of two parts; the first part 

involves the derivative of stress d  , which depends on the material response and leads to 
the material tangent stiffness matrix materialK , and the second part involves the current state 
of stress  , which accounts for the geometric effects of the deformation (including rotation 
and stretching) and leads to the geometric stiffness matrix geometryK . 

The material tangent stiffness matrix materialK  can be obtained by substituting the 
constitutive law definition   d d  D   and  d d B u  into the first part of relation (23) as 

 

  
material T

L NLd


     K B DB K K  (24) 

 
where LK  represents the usual, small displacement stiffness matrix and the matrix NLK  is 
due to the large displacements. The geometric stiffness matrix geometryK  can be derived by 
substituting NLd d d  B B GA  into the second part of relation (23) as 

 

  

geometry T d
 K G M G  (25) 

 
where M  is a 99  matrix of the six stress components for three-dimensional problems 
and is defined by 
 

 
3 3 3 3 3 3

3 3 3 3

3 3.

x xy xz

y yz

zsym


  
 



  

 



 
   

  

I I I

M I I

I

 (26) 

 
where I  is the identity matrix. Thus, the total tangential stiffness matrix K


 used in 

nonlinear coupled FE equations (19) is defined as 
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      1
1 1

i i
i T T
n

n n
d d 

 
     K B DB G M G


 (27) 

 
All the ingredients necessary for computing the large deformation of saturated-

unsaturated porous media are now available.  
 
 

4. SOIL CONSTITUTIVE MODELS 
 

In order to reproduce soil behaviour under cyclic loading, as a sequence of loading–
unloading–reloading, modifications have to be introduced to the classical constitutive 
models. The success for an elasto-plastic solution of the nonlinear coupled equations (22) 
depends on; firstly, a reasonable elasto-plastic constitutive model which can reproduce soil 
behaviour under complicated loading conditions and secondly, an accurate and stable 
integration algorithm for elasto-plastic constitutive relation. It is however imperative that the 
proposed model includes two characteristics. It must be in terms of effective stresses to 
show the failure when a residual angle of friction is reached and, it must be history 
dependent to show an accumulation of negative volumetric strain which results in pore 
pressure increases and hence strength degradation which is the essence of liquefaction. In 
addition, it should of course reproduce as accurately as possible stress-strain paths observed 
in laboratory experiments and make this with a relatively small number of parameters. In the 
present study, the nonlinear behaviour of soil is simulated for the description of cyclic 
loading using generalized plasticity theory based on the Pastor-Zienkiewicz (PZ), the 
Bolzon-Schrefler-Zienkiewicz (BSZ), and the enhanced-BSZ models. 

The framework of generalized plasticity theory was first introduced by Zienkiewicz and 
Mroz [25] to model the behavior of sand under monotonic and cyclic loading. The main 
advantage of theory is that neither yield surface nor plastic potential surface needs to be 
explicitly defined. In generalized plasticity theory, the constitutive tensor in loading 

1
L L
C = D  differs from constitutive tensor in unloading 1

U U
C = D , i.e. L Ld d ε C   for 

loading and U Ud d ε C   for unloading. In fact, at each point of the stress space, a direction 
tensor is specified to distinguish between loading and unloading. The constitutive matrix can 
be defined as 

 
    ,      T T

L L U UL U

e e
g gH H   C C n n C C n n  (28) 

or in reverse form 
 

 
  

  

   ,     
T T

L UT T
L U

e e e e
gL gUe e

e e
gL gUH H

   
 

D n n D D n n D
D D D D

n D n n D n
 (29) 

 
where LH  and UH  are the plastic hardening/softening modulus in loading and unloading 
and gLn  and gUn  are the normal vector to plastic potential in loading and unloading 
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conditions. In this frame work, all necessary components of elasto-plastic constitutive matrix 
depend on the current state of stress and loading/unloading condition. 

 
4.1 The Pastor-Zienkiewicz model 
In the generalized plasticity framework of Pastor-Zienkiewicz model, parameters gn , n  and 

/L UH  can be obtained without referring to plastic potential, or yield surfaces. However, the 
yield and potential surfaces, f  and g , can be defined using the normal directions to these 
surfaces, as shown in Figure 1. In order to introduce the parameters of the model, a triaxial 
compression test may be applied. Considering 

1 3p J   and 
23 Dq J  with their work-

associated strains invariants p
v  and p

s , it can be shown that the dilatancy gd  can be 
approximated from the stress ratio p q   as 

 

 

Figure 1. The yield and plastic potential surfaces of Pastor-Zienkiewicz model 

 

 (1 )( )
p

p
v

g g
s

d
d M

d

  


     (30) 

 
where   is the material parameter and gM  denotes the slope of critical state line. The 

normal vectors to the plastic potential and yield surfaces can be determined by 
 

 2
 , ,1 1( ) ( )T

g gv gs g gn n d d  n  (31) 

 

  
2, ,1 1( ) ( )T

f fv sn n d d  n  (32) 

 
where fd  is defined in a similar manner to gd  by (1 )( )ffd M    , where g fM M  is 

equal to relative density. If f gd d , the hardening rule is associated. 

The plastic modulus LH  for the loading condition is defined as 
 

  0L DMf v sH H p H H H H   (33) 
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where 4
1( )ffH    , 0 1 0exp( )sH      , 1( )gvH M  ,  maxζDMH

  , 

 1 1f fM    and  

 

11 (1 )( )( )[ ]gp M       , with 0H , 0 , 1  and U  denoting 
the material parameters obtained from experiments. 

The plastic modulus UH  for unloading condition is defined as 
 

 
   

0

0

       for  1

              for  1

U
U U U U

U U

g g

g

H H M M

H M

 




 


 (34) 

 
where 0UH  is the material parameter and U  is the stress ratio from which unloading takes 

place. The vector 
U

gn  is defined as 

 

    , ,( ) ( )T T

U U Ug g g gv gsv s
n n n n   n  (35) 

 
4.2 The Bolzon-Schrefler-Zienkiewicz model 
The BSZ model was proposed by Bolzon et al. [16] that considers the effective stress tensor 
and suction as independent stress variables. They have shown that the effective stress is 
thermodynamically consistent, and is particularly suitable for partially saturated soil 
mechanics compared with other stress tensors. Based on this model, the effective stress is 
defined as ( )g gij ij ij w wS p S p      , with wp  and gp  are the water and gas pressures, 
respectively. Furthermore, the suction is defined by gc wp p ps    , and the relationship 
between relative saturation and suction is assumed to be   1 tanh( )rS m s    [10], where   
and m  are material constants. 

In BSZ model, the plastic behavior of soil is assumed as a function of suction by 
modifying the hardening modulus, defined in equation (33), through the introduction of 
multiplicative function wH  that relates the variation of hardening to suction linearly. i.e. 

 
    0L DMfw v sH H p H H H H H   (36) 

 
where  1wH as  , with a  denoting a material parameter. In this model, the function wH  is 
determined as required to fit different experimental data. In some cases, a dependence of 

wH  on p  has to be assumed to describe the behavior of soil that exhibit a maximum 
collapse at some value of the mean stress. This feature can be dealt with above relation by 
assuming the dependence of a  on the effective mean stress p  through the function 

21 )exp( apaa  . In this way, the original formulation of fully saturated soil can be 
recovered when suction is equal to zero. 

Based on the dependence of plastic modulus on suction, similar description has been 
introduced in the yield and potential surface equations. Using the experimental observations 
[16], an increasing function of fp  on suction is assumed as  

0f yp p bs  , in which the 
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parameter b is determined by experimental data and 
0yp  is the initial yield stress for 

saturated condition. 
 

4.3 The enhanced–BSZ model 
The enhanced–BSZ model was proposed by Santagiuliana and Schrefler [21] by introducing 
a hydraulic constitutive relationship and a hydraulic hysteresis in the BSZ model to take into 
account the irreversible deformation during cyclic drying and wetting until structural 
collapse. In this model, the plastic strain is decomposed into two components; one depends 
on the effective stress tensor and the other on suction, i.e. 

 

   

1 1p T
g g

b

d d d
H H

s n n n  (37) 

where  
    0 DMfbH wH p H H

 
 (38) 

 
with w  denoting a parameter to be assumed as the function of suction. In above relation, 

1( )f fH   


 and   max( )ζDMH J s
 


, in which ( )J s  provides an additional form of 

hardening due to partial saturation defined as  ( ) exp (1 )[ ]wJ s S  , and the mobilized 
stress function is defined by  

 

1/
1 1 (1 ) ( )( )

c
p Mc       , where maxζ  is the maximum value 

of  . 
In this model, the wetting path is considered as an unloading stress path, and the first 

term of equation (37) is assumed zero. Thus,  
 

  

   0

1p

DMf
vd d

wH p H H
s 


   (39) 

 
It means that the plastic volume is proportional to the rate of suction, and implies that the 

model predicts the dilation of unsaturated soil when wetting occurs. In the plane of   ( , )wSs , 
each cycle of drying and wetting has to be within two limiting curves obtained by drying 
from a fully saturated state SI  and wetting from a dry state SD , as shown in Figure 2. 
These two functions link the suction to the degree of water saturation with an elasto-plastic 
relation that depends on water pressure. Santagiuliana and Schrefler [21] introduced two 
additional yield surfaces defining the elastic and elasto-plastic drying and wetting 
boundaries. These surfaces are denoted by the index SI for suction-increase (drying) yield 
surface and SD for the suction-decrease (wetting) yield surface. The new two surfaces SI 
and SD describe the irreversible changes in volume and degree of water saturation caused by 
cyclic drying and wetting under constant effective stress. 

The elastic relationship between e
wS  and s  is assumed to be linear as 

 
   

e
w sdS nK ds  (40) 
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Figure 2. The drying and wetting cycle in the plane of   ( , )wSs  

 
and the relationship between the plastic increment of p

wS  and the suction is defined as 

 

  1 1 SI , SD               p
w sndS d ds K ds      (41) 

 
 

5. VERIFICATION OF COMPUTATIONAL ALGORITHM 
 

In order to evaluate and verify the performance of proposed computational algorithm, 
several examples are analyzed by means of a set of confining pressure and triaxial tests. The 
first three simulations include the drained behavior of a Hostun and certain loose and dense 
sands under compression in triaxial tests to illustrate the capability of PZ model. The next 
numerical example is chosen to demonstrate the validity of Bolzon-Schrefler-Zienkiewicz 
model for the behavior of partially saturated soil using the experiment performed on clay 
samples by Escario and Saez [26]. Finally, the behavior of enhanced–BSZ model is 
evaluated in the case of wetting and drying cycle using experimental data on compacted 
Betonite–Kaolin. The convergence tolerance is set to 410 . 

The first three-examples illustrate the evaluation of PZ model in numerical simulation of 
triaxial tests. A specimen of Hostun sand is numerically simulated under triaxial condition. 
Triaxial tests consisted of an initial isostatic compaction step up to pressure value of 207 
MPa. The material parameters of PZ model for Hostun sand are given in Table 1. The 
variation of deviatoric stress with axial strain is presented in Figure 3(a). Also plotted in 
Figure 3(b) is the variation of volumetric strain with axial strain. Remarkable agreement can 
be observed between the proposed computational algorithm and those reported by Saada and 
Bianchini [27]. The next two examples are the simulation of two triaxial tests on certain 
loose and dense sands. The PZ material parameters for both sands are given in Table 2. 
Figure 4 presents the variation of deviatoric stress with axial strain for two different sands. 
There is a good agreement between the proposed model and those reported by Taylor [28]. 
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Table 1: Hostun sand; the parameters of Pastor-Zienkiewicz model 

K0 G0 Mg Mf g , f 0 1 H0  , U 

43000.0 111000.0 1.26 1.2 0.45 2.0 0.13 1000.0 2.0 
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Figure 3. Drained behavior of Hostun Sand in compression triaxial test; a) The variation of 
deviatoric stress with axial strain, b) The variation of volumetric strain with axial strain 

 

Table 2: The loose and dense sands; The parameters of Pastor-Zienkiewicz model 

 K0 G0 Mg Mf g , f 0 1 H0  , U 

Loose 30000.0 150000.0 1.33 0.50 0.45 2.25 0.2 4000.0 2.0 

Dense 30000.0 150000.0 1.28 0.72 0.45 2.25 0.2 16000.0 2.0 
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Figure 4. Drained behavior of loose and dense sands in compression triaxial test; a) Loose sand, 
b) Dense sand 
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In order to illustrate the performance of BSZ model, the behavior of partially saturated 
soil is investigated using the experimental test performed on clay sample. The material 
parameters of BSZ model for clay sample are given in Table 3. In Figure 5(a), the loading 
path is shown corresponding to the decrease of suction from 3.5 MPa  to zero at constant 
vertical external pressure 0.2 MPap  , in which the material exhibits first swelling and 
then collapse. The wetting path (AB) in the planes of   ( , )p s  and    ( , )p s  are shown by 
the solid and dashed lines, respectively. In Figure 5(b), the variation of predicted specific 
volume is plotted with suction. There is a good agreement between the proposed numerical 
simulation and that of experiment reported by Escario and Saez [26].  

In the last example, the performance of enhanced–BSZ model is presented using an 
experiment test on compacted Betonite–Kaolin in the case of wetting and drying cycle. The 
material parameters of enhanced–BSZ model are given in Table 4. Suction first decreases 
from 200 kPa  to 20 kPa  and then, increases to 200 kPa  at a constant mean net stress of 
10 kPa . In Figure 6, the results of wetting–drying cycle on compacted Betonite–Kaolin are 
compared with those reported by Wheeler et al. [29] under isotropic stress-state in the planes 
of   

*( , )ps  ,   ( , )v s  and   ( , )rS s . A comparison of the model predictions with experimental 
data illustrates that the proposed model successfully capture the elastic expansion during the 
wetting path and subsequently the irreversible compression during the drying path that does 
not exceed the maximum value of suction previously applied. 

 
Table 3: Clay sample; The parameters of BSZ model 

0 M l  (0) a 0yp  i 

2.3 0.8 2 MPa 0.035 0.0105 0.1 MPa-1 0.07 MPa 0.55 

 

(a)  (b)  

Figure 5. The partially saturated behavior of clay sample; a) The loading path in the planes of 
  ( , )p s  and    ( , )p s , b) The variation of predicted specific volume with suction 
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The Bolzon-Schrefler-Zienkiewicz model and enhanced–BSZ model have been used to 
simulate some important features of saturated-unsaturated soils, such as collapse due to 
suction and hydraulic hysteresis. These models define a yield surface in the plane of   ( , )p s , 
which can be used to model the collapse during wetting [16]. However, to simulate the 
situation that the confining stress and deviatoric stress change simultaneously, the modified 
Pastor-Zienkiewicz model based on the BSZ model is adopted here to simulate the failure of 
lower San–Fernando dam.  

 
Table 4: The compacted Betonite–Kaolin; The parameters of enhanced–BSZ model 

0 Sr (0)   w   SD SI A pmax 

2.2 0.65 0.15 0.02 10 8 10 200 kPa 2000 kPa –0.003 20 kPa 

 

  (a)  (b)  

(c)  

Figure 6. The wetting and drying cycle of compacted Betonite–Kaolin under isotropic stress 
state; A comparison between the proposed simulation and experimental results in the planes: a) 

  

*( , )ps  , b)   ( , )v s , c)   ( , )rS s  
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6. NUMERICAL MODELING OF LOWER SAN–FERNANDO DAM  

 
In order to illustrate the capability of proposed computational algorithm in modeling of 
unsaturated porous media, the large FE deformation analysis of lower San–Fernando dam is 
presented under the 1971 earthquake using the modified PZ model. Numerical modeling is 
performed for 2D and 3D simulations and the results are compared. The analysis is carried 
out to simulate the failure of lower San–Fernando dam, which collapsed during the 
earthquake of February 9, 1971. Although the earthquake lasted for about 15 s, the failure of 
dam occurred at about 60 s after beginning of the earthquake. Seed et al. [30] illustrated this 
failure, as shown in Figure 7. They found that the time difference between the failure and 
end of the earthquake was due to important pore pressure build-up, as a result of cyclic 
loading, first in the central portion of the dam and then, the migration of this excess pore 
pressure in the post earthquake period to the regions closer to the upstream slope of the dam, 
and so the failure occurred at about 60 s after beginning of the earthquake.  

The geometry, material zones and boundary conditions of the dam are shown in Figure 8. 
The finite element mesh employed in 3D simulation is eight-noded hexahedral elements 
with bilinear displacement interpolation and constant pressure. On the virtue of symmetry, 
the problem is modeled for one-half of the dam. The general material properties of the dam 
are given in Table 5 for different zones. The PZ material parameters are listed in Table 6. 
The relations between the degree of saturation, permeability and water pressure are plotted 
in Figure 9. The distribution of pore pressure in the dam body at steady state condition is 
presented in Figure 10(a) for 2D and 3D simulations. Obviously, the negative pore pressure 
exists in the dam crest and downstream slope in unsaturated zones. Without this suction the 
preliminary computations indicates that immediate local failure develops in dry material due 
to shaking. Figure 10(b) shows the distribution of effective vertical stress in the dam body at 
steady state condition. Good agreement can be observed between 2D and 3D simulations. 
 

 

 

 

Figure 7. The mechanism of failure of the lower San–Fernando dam under the 1971 earthquake 
(Seed et al. [30]) 
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      (a)  

                           (b)  

Figure 8. The material zones, geometry and boundary conditions of lower San–Fernando dam 
 

Table 5: The San Fernando dam; The general material properties 

Zone E (Pa)   KS (Pa) Kw (Pa)  S (kg/m3) N k (m/s)  

1 1.53e+8 0.2857 1.0e+22 2.0e+9 2756 0.375 0.001 

2 0.89e+8 0.2857 1.0e+22 2.0e+9 2756 0.375 0.01 

3 1.02e+8 0.2857 1.0e+22 2.0e+9 2756 0.375 0.001 

4 0.98e+8 0.2857 1.0e+22 2.0e+9 2756 0.375 0.01 

 
Table 6: The San Fernando dam; The parameters of modified Pastor-Zienkiewicz model 

Zone K0 G0 Mg Mf g , f 0 1 H0 H U0 (Pa)   , U RI A (MPa1)  

1 120 180 1.55 1.400 0.45 4.2 0.2 700.0 6.00e+7 2.0 1.0 0.1 

2 70 105 1.51 0.755 0.45 4.2 0.2 408.3 3.50e+7 2.0 1.0 0.1 

3 80 120 1.51 1.133 0.45 4.2 0.2 467.0 4.00e+7 2.0 1.0 0.1 

4 75 112 1.51 0.906 0.45 4.2 0.2 408.3 3.75e+7 2.0 1.0 0.1 
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Figure 9. The relationships between pore-water pressure head )( www ph  , saturation wS  and 

relative permeability )1(/)( kSkk wr   (after Huang and Zienkiewicz [24]) 
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Figure 10. The steady state condition; a) The distribution of pore pressure, b) The distribution of 
effective vertical stress 

 
The variations of excess pore pressure with time at different points are shown in Figure 

11. A comparison between the 2D and 3D simulations is presented in this figure. As can be 
seen, the rate of dissipation of water pressure is similar in both analyses, however - the 3D 
analysis results in higher excess pore pressure. For all estimated points, 2D and 3D analyses 
predict the peak of excess pore pressure after the earthquake period. Furthermore, both 
simulations estimate the larger values of water pore pressures at the points near the upstream 
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slope in the center portion of the dam, i.e. points G and H. In Figure 12, the variations of 
horizontal and vertical displacements with time are presented at the dam crest and upstream 
slope (point G). It can be observed from the results of displacements on upstream slope that 
the model estimates the higher values of deformation in this region and thus, causes the 
failure in upstream slope near the center of the dam. Furthermore, the model predicts 
liquefaction in 60-90 s after beginning of the earthquake, which was experimentally reported 
by Seed et al. [30].  
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Figure 11. The variations of excess pore water pressure with time at different points  

 
In order to illustrate the mechanism of the failure in the dam body, the distribution of excess 

pore water pressure, the effective stress contours, the distribution of first invariant of effective 
stress and the deformed meshes are presented in Figures 13 and 14 for 2D and 3D analyses at 
15 and 60 s after beginning of the earthquake. According to Figure 13, there is a region with 
large portion of excess water pressure in the center of the dam at the end of earthquake. In 
Figure 14, the migration of this excess water pressure from the center portion of the dam into 
the upstream slope of the dam can be clearly observed. Also presented in this figure is the 
minimum values of the effective vertical stress and first invariant of effective stress in the 
upstream slope region, which is similar to the failure surface illustrated in Figure 7. These 
results demonstrate that there is a good agreement between the predicted failure using the 
modified Pastor-Zienkiewicz model and those reported by Seed et al. [30]. 
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Figure 12. The variation of horizontal and vertical displacements with time at different points  

 

 

Figure 13. Numerical simulation results at 15.0 s after beginning of the earthquake for 2D and 
3D modeling; a) The distribution of excess pore water pressure, b) The distribution of effective 

vertical stress, c) The distribution of first invariant of effective stress, d) The deformed mesh 



A LARGE PLASTICITY DEFORMATION OF UNSATURATED SOIL... 
 

 

23

 

Figure 14. Numerical simulation results at 60.0 s after beginning of the earthquake for 2D and 
3D modeling; a) The distribution of excess pore water pressure, b) The distribution of effective 

vertical stress, c) The distribution of first invariant of effective stress, d) The deformed mesh 

 
 

7. CONCLUSION 
 

In the present paper, the large plasticity deformation of 2D and 3D finite element simulation 
was presented for dynamic analysis of unsaturated soils with special reference to the failure 
of lower San Fernando dam under the 1971 earthquake. The coupled formulation based on 
Biot theory was presented for solving geotechnical problems associated with unsaturated 
soils. The large deformation Lagrangian FE formulation was applied to the governing 
equations for the spatial discretization, followed by a generalized Newmark scheme used for 
the time domain discretization. The framework of generalized plasticity was presented in the 
concept of three plasticity models, including: the Pastor-Zienkiewicz model, Bolzon-
Schrefler-Zienkiewicz model, and the enhanced-BSZ model. The implementation of 
computational algorithm was validated by means of a set of confining pressure and triaxial 
tests, including: the drained behavior of a Hostun and certain loose and dense sands under 
compression in triaxial tests to illustrate the capability of PZ model, the partially saturated 
behavior of experiment performed on clay sample to demonstrate the validity of BSZ model, 
and the experiments of wetting and drying cycle on compacted Betonite–Kaolin to evaluate 
the behavior of enhanced–BSZ model. Finally, the modified Pastor-Zienkiewicz model was 
implemented to model the back analysis of the failure of lower San Fernando dam under the 
1971 earthquake, and the comparison was performed between the 2D and 3D analyses. The 
results are shown that there is a good agreement between the predicted failure obtained by 
modified Pastor-Zienkiewicz model and those reported experimentally by Seed et al. [30]. 
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